Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Comput Struct Biotechnol J ; 23: 1298-1310, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38560280

RESUMO

In gestational diabetes mellitus (GDM), adipose tissue undergoes metabolic disturbances and chronic low-grade inflammation. Alternative polyadenylation (APA) is a post-transcriptional modification mechanism that generates mRNA with variable lengths of 3' untranslated regions (3'UTR), and it is associated with inflammation and metabolism. However, the role of APA in GDM adipose tissue has not been well characterized. In this study, we conducted transcriptomic and proteomic sequencing on subcutaneous and omental adipose tissues from both control and GDM patients. Using Dapars, a novel APA quantitative algorithm, we delineated the APA landscape of adipose tissue, revealing significant 3'UTR elongation of mRNAs in the GDM group. Omental adipose tissue exhibited a significant correlation between elongated 3'UTRs and reduced translation levels of genes related to metabolism and inflammation. Validation experiments in THP-1 derived macrophages (TDMs) demonstrated the impact of APA on translation levels by overexpressing long and short 3'UTR isoforms of a representative gene LRRC25. Additionally, LRRC25 was validated to suppress proinflammatory polarization in TDMs. Further exploration revealed two underexpressed APA trans-acting factors, CSTF3 and PPP1CB, in GDM omental adipose tissue. In conclusion, this study provides preliminary insights into the APA landscape of GDM adipose tissue. Reduced APA regulation in GDM omental adipose tissue may contribute to metabolic disorders and inflammation by downregulating gene translation levels. These findings advance our understanding of the molecular mechanisms underlying GDM-associated adipose tissue changes.

2.
Can Assoc Radiol J ; : 8465371241238917, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577746

RESUMO

PURPOSE: To assess the diagnostic utility of clinical magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) in distinguishing between histological grading and isocitrate dehydrogenase (IDH) classification in adult diffuse gliomas. METHODS: A retrospective analysis was conducted on 247 patients diagnosed with adult diffuse glioma. Experienced radiologists evaluated DWI and MRS images. The Kruskal-Wallis test examined differences in DWI and MRS-related parameters across histological grades, while the Mann-Whitney U test assessed molecular classification. Receiver Operating Characteristic (ROC) curves evaluated parameter effectiveness. Survival curves, stratified by histological grade and IDH classification, were constructed using the Kaplan-Meier test. RESULTS: The cohort comprised 141 males and 106 females, with ages ranging from 19 to 85 years. The Kruskal-Wallis test revealed significant differences in ADC mean, Cho/NAA, and Cho/Cr concerning glioma histological grade (P < .01). Subsequent application of Dunn's test showed significant differences in ADC mean among each histological grade (P < .01). Notably, Cho/NAA exhibited a marked distinction between grade 2 and grade 3/4 gliomas (P < .01). The Mann-Whitney U test indicated that only ADC mean showed statistical significance for IDH molecular classification (P < .01). ROC curves were constructed to demonstrate the effectiveness of the specified parameters. Survival curves were also delineated to portray survival outcomes categorized by histological grade and IDH classification. Conclusions: Clinical MRS demonstrates efficacy in glioma histological grading but faces challenges in IDH classification. Clinical DWI's ADC mean parameter shows significant distinctions in both histological grade and IDH classification.

3.
BMC Pediatr ; 24(1): 227, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561715

RESUMO

BACKGROUND: Summarizing the clinical features of children with intussusception secondary to small bowel tumours and enhancing awareness of the disease. METHODS: Retrospective summary of children with intussusception admitted to our emergency department from January 2016 to January 2022, who underwent surgery and were diagnosed with small bowel tumours. Summarize the types of tumours, clinical presentation, treatment, and prognosis. RESULTS: Thirty-one patients were included in our study, 24 males and 7 females, with an age of onset ranging from 1 m to 11y 5 m. Post-operative pathology revealed 4 types of small intestinal tumour, 17 lymphomas, 10 adenomas, 4 inflammatory myofibroblastomas and 1 lipoma. The majority of tumours in the small bowel occur in the ileum (83.9%, 26/31). Abdominal pain, vomiting and bloody stools were the most common clinical signs. Operative findings indicated that the small bowel (54.8%, 17/31) and ileocolic gut were the main sites of intussusception. Two types of procedure were applied: segmental bowel resection (28 cases) and wedge resection of mass in bowel wall (3 cases). All patients recovered well postoperatively, with no surgical complications observed. However, the primary diseases leading to intussusception showed slight differences in long-term prognosis due to variations in tumor types. CONCLUSIONS: Lymphoma is the most common cause of intussusception in pediatric patients with small bowel tumours, followed by adenoma. Small bowel tumours in children tend to occur in the ileum. Therefore, the treatment of SBT patients not only requires surgeons to address symptoms through surgery and obtain tissue samples but also relies heavily on the expertise of pathologists for accurate diagnosis. This has a significant impact on the overall prognosis of these patients.


Assuntos
Neoplasias Intestinais , Intussuscepção , Masculino , Feminino , Humanos , Criança , Intussuscepção/etiologia , Intussuscepção/cirurgia , Estudos Retrospectivos , Neoplasias Intestinais/complicações , Neoplasias Intestinais/cirurgia , Dor Abdominal/complicações , Intestino Delgado/cirurgia
4.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562852

RESUMO

Translating genetic findings for neurodevelopmental and psychiatric disorders (NPD) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, here we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop-codons (iSTOP) that lead to mRNA nonsense-mediated-decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 NPD genes. Using RNAseq, we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Interestingly, for three schizophrenia risk genes (SETD1A, TRIO, CUL1), despite the high efficiency of base editing, we only obtained heterozygous LoF alleles, suggesting their essential roles for cell growth. We replicated the reported neural phenotypes of SHANK3-haploinsufficiency and found CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.

5.
Foods ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611279

RESUMO

The detection of the storage state of frozen meat, especially meat frozen-thawed several times, has always been important for food safety inspections. Hyperspectral imaging (HSI) is widely applied to detect the freshness and quality of meat or meat products. This study investigated the feasibility of the low-cost HSI system, combined with the chemometrics method, to classify beef cuts among fresh (F), frozen-stored (F-S), frozen-thawed three times (F-T-3) and frozen-thawed five times (F-T-5). A compact, low-cost HSI system was designed and calibrated for beef sample measurement. The classification model was developed for meat analysis with a method to distinguish fat and muscle, a CARS algorithm to extract the optimal wavelength subset and three classifiers to identify each beef cut among different freezing processes. The results demonstrated that classification models based on feature variables extracted from differentiated tissue spectra achieved better performances, with ACCs of 92.75% for PLS-DA, 97.83% for SVM and 95.03% for BP-ANN. A visualization map was proposed to provide detailed information about the changes in freshness of beef cuts after freeze-thawing. Furthermore, this study demonstrated the potential of implementing a reasonably priced HSI system in the food industry.

6.
Mov Disord ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610104

RESUMO

BACKGROUND: The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE: The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS: We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS: GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS: rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

7.
Angew Chem Int Ed Engl ; : e202401238, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651232

RESUMO

Emerging high entropy compounds (HECs) have attracted huge attention in electrochemical energy-related applications. The features of ultrafine size and carbon incorporation show great potential to boost the ion-storage kinetics of HECs. However, they are rarely reported because high-temperature calcination tends to result in larger crystallites, phase separation, and carbon reduction. Herein, using the NaCl self-assembly template method, by introducing a high-pressure field in the calcination process, the atom diffusion and phase separation are inhibited for the general formation of HECs, and the HEC aggregation is inhibited for obtaining ultrafine size. The general preparation of ultrafine-sized (< 10 nm) HECs (nitrides, oxides, sulfides, and phosphates) anchored on porous carbon composites is realized. They are demonstrated by combining advanced characterization technologies with theoretical computations. Ultrafine-sized high entropy sulfides-MnFeCoCuSnMo/porous carbon (HES-MnFeCoCuSnMo/PC) as representative anodes exhibit excellent sodium-ion storage kinetics and capacities (a high rating capacity of 278 mAh g-1 at 10 A g-1 for full cell and a high cycling capacity of 281 mAh g-1 at 20 A g-1 after 6000 cycles for half cell) due to the combining advantages of high entropy effect, ultrafine size, and PC incorporation. Our work provides a new opportunity for designing and fabricating ultrafine-sized HECs.

8.
J Med Virol ; 96(3): e29530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529528

RESUMO

Integration of hepatitis B virus (HBV) DNA into the human genome is recognized as an oncogenic factor and a barrier to hepatitis B cure. In the study, biopsy liver tissues were collected from adolescents and young adults with acute HBV infection younger than or equal to 35 years of age and from HBV-infected infant patients younger than or equal to 6 months of age. A high-throughput sequencing method was used to detect HBV DNA integration. Totally, 12 adolescents, young adults, and 6 infants were included. Among the 12 patients with acute HBV infection, immunohistochemical staining of intrahepatic hepatitis B surface antigen for all displayed negative results, and no HBV DNA integrants in the hepatocyte DNA were confirmed. All infant patients had elevated levels of alanine aminotransferase and high levels of serum HBV DNA. Numerous gene sites of hepatocyte DNA were integrated by HBV DNA for each infant patient, ranging from 120 to 430 integration sites. The fragile histidine triad gene was the high-frequency integrated site in the intragenic region for infant patients. In conclusion, hepatocyte DNA is integrated by HBV DNA in babies with active hepatitis B but seems seldom affected among adolescents and young adults with acute HBV infection. Infantile hepatitis B should be taken seriously considering abundant HBV DNA integration events.


Assuntos
Hepatite B Crônica , Hepatite B , Lactente , Adolescente , Humanos , Adulto Jovem , Vírus da Hepatite B/genética , DNA Viral/genética , Fígado/patologia , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B , Genômica
9.
Biomimetics (Basel) ; 9(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38534835

RESUMO

The current motion interaction model has the problems of insufficient motion fidelity and lack of self-adaptation to complex environments. To address this problem, this study proposed to construct a human motion control model based on the muscle force model and stage particle swarm, and based on this, this study utilized the deep deterministic gradient strategy algorithm to construct a motion interaction control model based on the muscle force model and the deep reinforcement strategy. Empirical analysis of the human motion control model proposed in this study revealed that the joint trajectory correlation and muscle activity correlation of the model were higher than those of other comparative models, and its joint trajectory correlation was up to 0.90, and its muscle activity correlation was up to 0.84. In addition, this study validated the effectiveness of the motion interaction control model using the depth reinforcement strategy and found that in the mixed-obstacle environment, the model's desired results were obtained by training 1.1 × 103 times, and the walking distance was 423 m, which was better than other models. In summary, the proposed motor interaction control model using the muscle force model and deep reinforcement strategy has higher motion fidelity and can realize autonomous decision making and adaptive control in the face of complex environments. It can provide a theoretical reference for improving the effect of motion control and realizing intelligent motion interaction.

10.
Sci Total Environ ; 924: 171512, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453081

RESUMO

The presence of pesticide residues in aquatic environments poses a significant threat to both aquatic ecosystems and human health. The presence of these residues can result in significant harm to aquatic ecosystems and can negatively impact the health of aquatic organisms. Consequently, this issue requires urgent attention and effective measures to mitigate its impact. However, developing sensitive and rapid detection methods remains a challenge. In this study, an all-in-one test strip, which integrated bioenzymes, nanoenzymes, and a chromogen, was developed in combination with an enzyme labeling instrument for a highly sensitive and convenient sensing of malathion residues. The oxidase activity of heme chloride (Hemin) in the strip can catalyze the oxidation of H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue-colored oxide. Simultaneously, the alkaline phosphatase (ALP) present in the strip can break down l-ascorbic acid-2-phosphate to produce ascorbic acid (AA). This AA then acts to reduce the oxidized form of TMB, turning it into a colorless substance and leading to the disappearance of its fluorescent signal. In the presence of a pesticide, the activity of ALP is inhibited and formation of AA is blocked, thereby preventing the reduction of oxidized TMB and producing a colored signal. According to this principle, the integrated test strip detected the target pesticide with high performance as per the optical density value determined via an enzyme marker. The detection limit of the test strip was 0.209 ng/mL with good sensitivity. The method was used for detecting malathion in actual river water samples, and the recoveries were in the range of 93.53 %-96.87 %. The newly devised technique effectively identified malathion in samples of natural water. This research has introduced a novel approach for the precise and convenient surveillance of pesticide remnants. Additionally, these discoveries could inspire the advancement of proficient multi-enzyme detection systems.


Assuntos
Malation , Praguicidas , Humanos , Ecossistema , Peróxido de Hidrogênio , Limite de Detecção , Corantes/química , Fosfatase Alcalina , Água
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167130, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537684

RESUMO

Hepatic ischemia-reperfusion injury(HIRI) remains to be an unsolved risk factor that contributes to organ failure after liver surgery. Our clinical retrospective study showed that lower donor liver CX3-C chemokine receptor-1(CX3CR1) mRNA expression level were correlated with upregulated pro-resolved macrophage receptor MERTK, as well as promoted restoration efficiency of allograft injury in liver transplant. To further characterize roles of CX3CR1 in regulating resolution of HIRI, we employed murine liver partial warm ischemia-reperfusion model by Wt & Cx3cr1-/- mice and the reperfusion time was prolonged from 6 h to 4-7 days. Kupffer cells(KCs) were depleted by clodronate liposome(CL) in advance to focus on infiltrating macrophages, and repopulation kinetics were determined by FACS, IF and RNA-Seq. CX3CR1 antagonist AZD8797 was injected i.p. to interrogate potential pharmacological therapeutic strategies. In vitro primary bone marrow macrophages(BMMs) culture by LXR agonist DMHCA, as well as molecular and functional studies, were undertaken to dissect roles of CX3CR1 in modulating macrophages cytobiological development and resolutive functions. We observed that deficiency or pharmacological inhibition of CX3CR1 facilitated HIRI resolution via promoted macrophages migration in CCR1/CCR5 manner, as well as enhanced MerTK-mediated efferocytosis. Our study demonstrated the critical roles of CX3CR1 in progression of HIRI and identified it as a potential therapeutic target in clinical liver transplantation.

12.
RSC Adv ; 14(11): 7592-7600, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38440283

RESUMO

Thermal conversion of kraft lignin, an abundant renewable aromatic substrate, into advanced carbon materials including graphitic carbon and multilayer/turbostratic graphene has recently attracted great interest. Our innovative catalytic upgrading approach integrated with molecular cracking and welding (MCW) enables mass production of lignin-derived multilayer graphene-based materials. To understand the critical role of metal catalysts in the synthesis of multilayer graphene, this study was focused on investigating the effects of transition metals (i.e., molybdenum (Mo), nickel (Ni), copper (Cu), and iron (Fe)) on thermal and graphitization behaviors of lignin. During the preparation of metal-lignin (M-lignin) complexes, Fenton-like reactions were observed with the formation of Fe- and Cu-lignin complexes, while Ni ions strongly interacted with oxygen-containing surface functional groups of lignin and Mo oxyanions weakly interacted with lignin through ionic bonding. Different chelation mechanisms of transition metal ions with lignin influenced the stabilization, graphitization, and MCW steps involved in thermal upgrading. The M-lignin complex behaviors in each of the three steps were characterized. It was found that multilayer graphene-based materials with nanoplatelets can be obtained from the Fe-lignin complex via MCW operation at 1000 °C under methane (CH4). Raman spectra indicated that Fe- and Ni-lignin complexes experienced a higher degree of graphitization than Cu- and Mo-lignin complexes during thermal treatment.

13.
Neoplasia ; 50: 100983, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417222

RESUMO

While BRAF alterations have been established as a driver in various solid malignancies, the characterization of BRAF alterations in prostate cancer (PCa) has not been thoroughly interrogated. By bioinformatics analysis, we first found that BRAF alterations were associated with advanced PCa and exhibited mutually exclusive pattern with ERG alteration across multiple cohorts. Of the most interest, recurrent non-V600 BRAF mutations were found in 3 of 21 (14.3 %) PCa patients demonstrating IDC-P morphology. Furthermore, experimental overexpression of BRAFK601E and BRAFL597R exhibited emergence of oncogenic phenotypes with intensified MAPK signaling in vitro, which could be targeted by MEK inhibitors. Comparison of the incidence of BRAF alterations in IDC-P between western and Chinese ancestry revealed an increased prevalence in the Chinese population. The BRAF mutation may represent important genetic alteration in a subset of IDC-P, highlighting the role of MAPK signaling pathway in this subtype of PCa. To the best of knowledge, this is the first description of non-V600 BRAF mutation in setting of IDC-P, which may in part explain the aggressive phenotype seen in IDC-P and could also bring more treatment options for PCa patients with IDC-P harboring such mutations.


Assuntos
Carcinoma Intraductal não Infiltrante , Neoplasias da Próstata , Proteínas Proto-Oncogênicas B-raf , Humanos , Masculino , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , China , Mutação , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas B-raf/genética
14.
Curr Med Imaging ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38415475

RESUMO

The 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System has brought a transformative shift in the categorization of adult gliomas. Departing from traditional histological subtypes, the new classification system is guided by molecular genotypes, particularly the Isocitrate Dehydrogenase (IDH) mutation. This alteration reflects a pivotal change in understanding tumor behavior, emphasizing the importance of molecular profiles over morphological characteristics. Gliomas are now categorized into IDH-mutant and IDH wildtype, with significant prognostic implications. For IDH-mutant gliomas, the concurrent presence of Alpha-Thalassemia/mental retardation syndrome X-linked (ATRX) gene expression and co-deletion of 1p19q genes further refine classification. In the absence of 1p19q co-deletion, further categorization depends on the phenotypic expression of CDKN2A/B. Notably, IDH wildtype gliomas exhibit a poorer prognosis, particularly when associated with TERT promoter mutations, EGFR amplification, and +7/-10 co-deletion. Although not part of the new guidelines, the methylation status of the MGMT gene is crucial for guiding alkylating agent treatment. The integration of structural and functional Magnetic Resonance Imaging (MRI) techniques may play a vital role in evaluating these genetic phenotypes, offering insights into tumor microenvironment changes. This multimodal approach may enhance diagnostic precision, aid in treatment planning, and facilitate effective prognosis evaluation of glioma patients.

15.
ACS Appl Mater Interfaces ; 16(6): 7883-7893, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299449

RESUMO

Effective heat dissipation and real-time temperature monitoring are crucial for ensuring the long-term stable operation of modern, high-performance electronic products. This study proposes a silicon rubber polydimethylsiloxane (PDMS)-based nanocomposite with a rapid thermal response and high thermal conductivity. This nanocomposite enables both rapid heat dissipation and real-time temperature monitoring for high-performance electronic products. The reported material primarily consists of a thermally conductive layer (Al2O3/PDMS composites) and a reversible thermochromic layer (organic thermochromic material, graphene oxide, and PDMS nanocoating; OTM-GO/PDMS). The thermal conductivity of OTM-GO/Al2O3/PDMS nanocomposites reached 4.14 W m-1 K-1, reflecting an increase of 2200% relative to that of pure PDMS. When the operating temperature reached 35, 45, and 65 °C, the surface of OTM-GO/Al2O3/PDMS nanocomposites turned green, yellow, and red, respectively, and the thermal response time was only 30 s. The OTM-GO/Al2O3/PDMS nanocomposites also exhibited outstanding repeatability and maintained excellent color stability over 20 repeated applications.

16.
Adv Healthc Mater ; : e2304284, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319961

RESUMO

Immune checkpoint blockade (ICB) has achieved unprecedented progress in tumor immunotherapy by blocking specific immune checkpoint molecules. However, the high biodistribution of the drug prevents it from specifically targeting tumor tissues, leading to immune-related adverse events. Biomimetic nanodrug delivery systems (BNDSs) readily applicable to ICB therapy have been widely developed at the preclinical stage to avoid immune-related adverse events. By exploiting or mimicking complex biological structures, the constructed BNDS as a novel drug delivery system has good biocompatibility and certain tumor-targeting properties. Herein, the latest findings regarding the aforementioned therapies associated with ICB therapy are highlighted. Simultaneously, prospective bioinspired engineering strategies can be designed to overcome the four-level barriers to drug entry into lesion sites. In future clinical translation, BNDS-based ICB combination therapy represents a promising avenue for cancer treatment.

17.
World J Diabetes ; 15(1): 72-80, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38313857

RESUMO

BACKGROUND: Intracranial atherosclerosis, a leading cause of stroke, involves arterial plaque formation. This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging (HR-VWI). AIM: To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI. METHODS: Ninety-four patients diagnosed with middle cerebral artery or basilar artery atherosclerosis were enrolled. Their basic clinical data were collected, and HR-VWI was performed. The vascular area at the plaque (VAMLN) and normal reference vessel (VAreference) were delineated and measured using image postprocessing software, and the Remodelling index (RI) was calculated. According to the value of the RI, the patients were divided into a positive remodelling (PR) group, intermediate remodelling (IR) group, negative remodelling (NR) group, PR group and non-PR (N-PR) group. RESULTS: The PR group exhibited a higher prevalence of diabetes and serum cholesterol levels than the IR and NR groups [45.2%, 4.54 (4.16, 5.93) vs 25%, 4.80 ± 1.22 and 16.4%, 4.14 (3.53, 4.75), respectively, P < 0.05]. The diabetes incidence was also significantly greater in the PR group than in the N-PR group (45.2% vs 17.5%, P < 0.05). Furthermore, the PR group displayed elevated serum triglyceride and cholesterol levels compared to the N-PR group [1.64 (1.23, 2.33) and 4.54 (4.16, 5.93) vs 4.54 (4.16, 5.93) and 4.24 (3.53, 4.89), P < 0.05]. Logistic regression analysis revealed diabetes mellitus as an independent influencing factor in plaque-PR [odds ratio (95% confidence interval): 3.718 (1.207-11.454), P < 0.05]. CONCLUSION: HR-VWI can clearly show the morphology and signal characteristics of intracranial vascular walls and plaques. Intracranial atherosclerotic plaques in diabetic patients are more likely to show PR, suggesting poor plaque stability and a greater risk of stroke.

18.
Inorg Chem ; 63(10): 4747-4757, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38412230

RESUMO

Low dimensional organic inorganic metal halide materials have shown broadband emission and large Stokes shift, making them widely used in various fields and a promising candidate material. Here, the zero-dimensional lead-free bromide single crystals (C6H14N)3Bi2Br9·H2O (1) and (C6H14N)3Sb3Br12 (2) were synthesized. They crystallized in the monoclinic crystal system with the space group of P21 and P21/n, respectively. Through ultraviolet-visible-near-infrared (UV-vis-NIR) absorption analysis, the band gaps of (C6H14N)3Bi2Br9·H2O and (C6H14N)3Sb3Br12 are found to be 2.75 and 2.83 eV, respectively. Upon photoexcitation, (C6H14N)3Bi2Br9·H2O exhibit broad-band red emission peaking at 640 nm with a large Stokes shift of 180 nm and a lifetime of 2.94 ns, and the emission spectrum of (C6H14N)3Sb3Br12 are similar to those of (C6H14N)3Bi2Br9·H2O. This exclusive red emission is ascribed to the self-trapping exciton transition caused by lattice distortion, which is confirmed through both experiments and first-principles calculations. In addition, due to the polar space group structure and the large spin-orbit coupling (SOC) associated with the heavy elements of Bi and Br of crystal 1, an obvious Rashba effect was observed. The discovery of organic inorganic metal bromide material provides a critical foundation for uncovering the connection between 0D metal halide materials' structures and properties.

19.
ACS Appl Mater Interfaces ; 16(7): 9088-9097, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319245

RESUMO

The nonclassical ten-pi-electron 5,5-fused thieno[3,4-c]thiadiazole (TTD) unit is an excellent building block for constructing sub-silicon-band gap organic semiconductors. However, no small molecule acceptor (SMA) materials based on TTD have been reported despite the fact that high-sensitivity near-infrared organic photodetectors (OPDs) are generally achieved by using SMAs. In this work, we report a TTD-based narrow band gap (0.95 eV) SMA material TTD(DTC-2FIC)2 with strong near-infrared absorption. Employing PTB7-Th as a donor, OPDs based on TTD(DTC-2FIC)2 exhibit an optimized responsivity of 0.095 (±0.007) A W-1 at 1100 nm and sustain a decent responsivity of 0.074 (±0.008) A W-1 at 1200 nm. Moreover, a good specific detectivity over 1 × 1011 Jones is achieved at a wavelength of 1200 nm. Detailed characterizations imply that the performance of TTD(DTC-2FIC)2-based OPDs may be substantially improved by choosing lower-mixing donors with shallower energy levels. This work demonstrates that SMAs incorporating TTD as the core unit hold promise for constructing high-sensitivity sub-silicon-band gap OPDs.

20.
Drug Metab Rev ; 56(1): 62-79, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226647

RESUMO

Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/ß-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.


Assuntos
Melatonina , Neoplasias , Humanos , Melatonina/uso terapêutico , Melatonina/metabolismo , Transdução de Sinais , Biologia , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...